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General form of the SU(3) Giirsey matrix 

K J BARNES, P H DONDI and S C SARKAR 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

MS received 11 November 1971 

Abstract. The general form of the unitary unimodular Giirsey matrix at the SU(3) level is 
found in terms of a general hermitian octet vector. The relevance to chiral lagrangian 
theories of hadron physics is discussed, and other applications are suggested. 

1. Introduction 

The widespread interest (Gasiorowicz and Geffen 1969), over the last few years, in the 
chiral algebra of SU(3) x SU(3) has focused attention on the problem of parametrizing 
a general unitary unimodular three by three matrix in terms of the components of a 
hermitian octet vector. We shall briefly review the developments in high energy physics 
which led to this specific problem, before giving a general solution and indicating some 
of its more immediate uses. 

One of the major techniques in studying the application of chiral algebras (both 
K(2) = SU(2) x SU(2) and K(3) = SU(3) x SU(3)) to hadronic dynamics has been the 
construction of explicit chiral invariant Lagrangians with their associated currents 
(Gasiorowicz and Geffen 1969), and with the subsequent addition of symmetry breaking 
terms. In order to construct such Lagrangians it is necessary to study the transforma- 
tion of particle fields under the chiral algebra, and in particular to find the explicit form 
of transformation law for those fields forming nonlinear realizations of the algebra. 
The general theory of such realizations is well established (Coleman et all969 and Isham 
1969) but leads directly only to a power series in fields which is difficult to compute beyond 
low orders. For the case of the K(2) algebra there are two approaches which lead to 
general closed form expressions for the transformation laws. One of these is the algebraic 
approach of Weinberg (1968) and the other the matrix method associated with the name 
of Gursey (Chang and Gursey 1967). Both these methods are in principle capable of 
generalization to the K(3) level but, despite extensive efforts, no general solution has 
been found. Macfarlane et a1 (1970, and references therein) have shown how the algebraic 
method leads to either equations of the sixth degree or linked partial differential 
equations and have found some simple particular solutions, while in the alternative 
approach they were able to discover three particular models. Although these authors 
have not found a general solution they have presented by far the most complete treatment 
ofthe problem to date, and we recommend it strongly to the interested reader (Macfarlane 
et a1 1970, and references therein). For our present purposes we will only indicate most 
briefly how the unitary matrix enters in the Gursey approach. 

If we consider a multiplet N of spin 3 fields which transform under SU(n) according 
to the fundamental (quark) representation, so that 

N + exp(ie'T')N (1) 
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where the Ti are the n x M matrix representations of the algebra, then by imposing 

N -+ exp($'T'y,)N (21 

for the parity changing transformations we have a linear representation of the full K(n)  
algebra. Here yay: i.'o = - i: j .  so that the Lagrangian 

Y = im3N + inRN 131 

although SU(n) invariant has a mass term which breaks the full chiral in1,ariance. 
Gursey's method consists of introducing at this point a unitary matrix function of the 
octet of hermitian pseudoscalar meson fields Mi which represent the Goldstone bosons 
of the scheme (Gasiorowicz and Geffen 1969). By choosing the transformation properties 
of 0 so that H 8 N  is a full chiral invariant, it is then possible to define a new quark 
field I) = oi"'N which transforms (nonlinearly in the meson fields) so that an invariant 
mass term is allowed. If  we now write 

where S and P are respectively scalar and pseudoscalar hermitian I I  x n matrix functions 
of Mi, then it  is simple to show that U is also unitary. Now the matrices 3 1  + y 5 )  are 
well known to be projection operators so that any required function of 0 may be formed 
immediately ifthe same function of U has been constructed, and moreover the transforma- 
tion laws of 0 and U are similarly trivially related. In order that the term N o h '  be 
invariant 0 must have the transformation law 

0 + exp(-i@Tiyj)O exp(-i@Tj;'j) ( 7 )  

under chiral action, and the useful infinitesimal result 

-+ U - ~ ~ ~ I T L ,  C;!  (81 

follows at once. If U is known as an explicit function of the Mi, then the transformation 
law for the M'  is straightforward to deduce. Such a treatment may be found in 
Macfarlane's work (Macfarlane et a1 1970) (for particular choices of the structure of U). 
where also the generalization required to define the transformation properties of all 
other fields, in terms of the unitary square root of U ,  is given. For the present work we 
content ourselves with this brief description, since the problem is now well posed. We 
have to construct the most general unitary 3 x 3 matrix out of the hermitian components 
:Mi ofan octet vector, and we must be able to construct simple functions (eg U ' ' 2 )  from it. 

2. Parametrization of the matrix 

First let us treat the problem at the SU(2) level where the results are known and the 
machinery familiar, but using an approach which lends itself to generalization. I n  this 
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case the M i  are simply the pion isovector triplet ni, there is only one independent isotopic 
invariant 71’ = nid,  and the product law 

T.7. I J = 6..+irijkZk I J  (9) 

specifies the properties of the hermitian traceless Pauli matrices. The vector ni defines 
only one direction in its space (all directions being equivalent), and if a normalized 
vector ni with 

. .  
n’n’ = 1 (10) 

is taken along this direction, then the fields ni are specified by the two angles inherent in 
ni and by the magnitude n’. Using this vector ni we may construct 

n* = +((lfnizi) (1 1) 
which, since niri is clearly a matrix square root of unity, are two hermitian projection 
operators. Now to construct the most general U expand it in the form 

U = a+n+  +a-n-  (12) 
where a’ are functions of n’, so that the unitarity implies that a’ are of modulus unity 
while the determinant of U is a’a- which may be absorbed into an overall phase. 
Therefore, restricting ourselves to unimodular U ,  we may take 

U = n+ exp(iO)+n- exp( -io) (13) 

= exp(iOnizi) (14) 
= cos O + hisi sin O (15) 

(16) 

where 8 is any hermitian function of n2, as the general form. If we define 

f = ( n 2 ) l / z  cot e 
then contact with the algebraic work of Weinberg (1968) is immediate. Alternatively, 
taking 

1 +ib 
1-ib 

a+ =- 

where b is a hermitian function of n’, we find the Cayley or rational representation of 
Macfarlane et al(1970), and the connection between this and the exponential treatment 
is obvious. All such choices of representation are general and equivalent (Weinberg 
1968); they contain one arbitrary function of the sole SU(2) invariant n’. Notice that the 
expansion (13) of U in terms of projection operators allows functions of U to be formed 
trivially and, in particular, the unitary unimodular U’’’ found by halving the ‘angle’ 8. 

As stated above, the advantage of this treatment is that it leads to a fairly straight- 
forward extension at  the SU(3) level. This time the hermitian traceless matrices satisfy 
the product law 

,LA. I J  = $3ij+di jkik+if i jk; lk  (18) 
the M i  form an octet vector of SU(3), and there are two independent SU(3) invariants 
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in general. The vector M i  defines two directions in its space since 

N' = d i j kMjMk  (21) 

3NiNi  = X 2  (22)  

with 

is in general an independent vector. These vectors have been extensively studied by 
Macfarlane et a1 (1970, and references therein) and by Michel and Radicati (1968), and 
we now quote several of their results without giving any proof. First they show that 

fijkMjNk = 0 (23) 
so we see that M i l i  and N i I i  are commuting matrices, and we shall speak of the vectors 
commuting. Next they establish that 

3di jkMjNk = X M i  (24) 

and hence the products of all contractions of the I matrices with the general vectors 
formed linearly from M i  and N i  can be computed. That such a general vector shall have 
a positive norm implies 

3 Y 2  < x3 (26) 

and we set 

in the remainder of this work. Finally, Michel and Radicati (1968) study particular 
vectors which will become relevant for our work at a later stage. They call charge 
vectors those M i  for which IY/ attains its maximum value, and N' is parallel to M i .  
Special vectors are those M i  for which Y is zero, and N' (which is therefore orthogonal 
to M i )  is itself a charge vector. We shall use the symbols qi and si for charge and special 
vectors of unit norm. 

With the above results in mind, we define the vectors mi and ri by 

and 

so that we have 

and 

miri = 0 

as obvious consequences. Now the results given above allow us to compute 

4 3  dijkmjm, = mi sin 4 + rl  cos 4 = - 4 3 dljkr,rk (32)  
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and 
J3 dijkmjrk = mi cos 4 - ri sin 4 (33) 

by straightforward algebra. Hence, if we define 

ai = ricosa+misina (34) 

p i  = -risina+micosa (35) 

- J3 dijka,ak = ai COS(4 - 3a) +pi Sin(4 - 3 M )  = 43 dijkpjpk (36) 

J3 dijkaj& = p i  cos(4 - 3a) - ai sin(4 - 3a) (37) 

we easily obtain 

and 

while the relations 

aiai = 1 = pipi 
clipi = 0 

(38) 

(39) 
are clearly also valid. Hence, if we demand that ji is special (and ai the corresponding 
charge) we have 

sin(4-3a) = 0 (40) 

cos(4-3a) = 1 (41) 
and hence 

= 84 +2kn) 

gives solutions when k takes on integer values. Of course there are only two independent 
vectors at all stages and we shall set k equal to zero, thus using one special vector and its 
associated charge. With this choice we now have 

where the signs have been taken so as to compare directly with the use of the third and 
eighth directions as respectively special and charge directions in ‘The Eightfold Way’ 
(Gell-Mann and Ne’eman 1964). This choice of sign was made in equation (41), and the 
alternate choice corresponds merely to reversing the sign of all components of the vectors. 

With this machinery at our disposal we now proceed by analogy with the SU(2) 
case. Since a general vector M i  now gives us in reality two commuting vectors, we expect 
three projection operators related to the (3 x 3) matrix cube roots of unity. The 
properties of the projection operators may be summarized by 

POPS = 0 = PBPa (a # B ; a  = 0, +, -) (45) 

where 1 is the unit matrix, and these projection operators are hermitian with unit trace. 
Now the matrices 
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where r ,  s and t are 0, 1 or 2, and w = exp($n) is a complex cube root of unity. are 
clearly 27 matrix cube roots of 1. Obviously r can be set equal to zero by extracting an 
algebraic factor, and from the resulting nine matrices we select the three with unit 
determinant 

1 = Po+P,+P_ (49 1 

N +  = Po+wP+ +w2P-  (501 

N -  = P 0 + o 2 P +  +COP- (51 1 

as our basic cube roots. The latter two of these roots are hermitian adjoints of each 
other, have zero trace (so that we might hope to construct them from E.' matrices). and 
obey 

N+*" = !% A _  N ~ -  = A V  + ( 5 1 )  

N + N -  = 1 = N _  N -  (531 

in agreement with corresponding equations on the algebraic cube roots. Immediately 
we can invert the equations (49), (50) and (51) into the form 

3P0 = 1 + N +  + A _  
3P+ = 1 f W 2 N +  + w N -  

3P- = l + w N + + w ' N _  

where the identity 

1 + W + C 0 2  = 0 (57)  

is used for the algebraic roots. 

we write 
To obtain the detailed relationship between the charge vectors and these cube roots. 

h' + = *V1+L1 = (a, - lbl)/.l (58)  

N = N-/ul = (a,  + ~b,);.~ 159) 

are easily derived. We identify bi as a special vector with ai as the corresponding charge 
and, with the normalization 

2a, = - \  3 y1 

2b, = , ' 3  SI 

make contact with our earlier results. 

(65 1 

(66) 
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The machinery is now complete, and the lesson is clearly that, rather than work with 
the Mi, one should use X ,  a, and the six independent components in N\, while employing 
the Pi wherever the matrix form is desired. In particular the relations 

and 

M = MiAi = - ( y )  l” ko sin a+ P +  sin( a+?) + P- sin( a -$)} (68 )  

are especially useful, and follow immediately from our previous results. Now, to specify 
the most general unitary unimodular U in terms of the Mi, we write 

U = UOP,+ U+P+ + U - P -  = U,P, (69) 

where the U ,  are functions of the SU(3) invariants X and Y (or $), and the P, are specified 
from the M i  as above. The unitary condition yields 

follows from unimodularity. Thus the situation is entirely analogous to that at the SU(2) 
level, and we simply present the exponential version as an example of the infinitely 
many equivalent general representations. We write 

U = exp i(8N’ + 8 * N - )  (72) 

(73) = p0 exp i(8 +e*) + P,  exp i(w8 + wz8*)+ P- exp i(028 + d*) 

where 8 is any complex algebraic function of X and Y,  and where the relation 
1 + w + w2 = 0 has been used to maintain maximum symmetry. It should be noted here 
that the Pa are given above explicitly so that U is expressed directly in terms of M i ,  the 
3.’ matrices, and the two arbitrary hermitian functions of X and Y inherent in 8. More- 
over, because the P, are projection operators, the unitary unimodular U”2 is trivial to 
find in any representation ; here it is obtained merely by halving the ‘angles’ 8. Notice 
that, if M i  is a special vector then Y = 0, so that 0 and 8* are functions of X which is now 
the sole SU(3) invariant. If M i  is a charge vector then only one direction is specified and 
I YI attains its maximum value. If 8 is taken to be hermitian, for example, then the special 
vector defined by ( N +  --IC) is not specified. Hence, in the charge case, only two pro- 
jection operators (Po and (P+ + p- ) )  are defined and the latter has trace two. With these 
modifications the general formalism applies, and the results may be read off directly 
even in these singular cases. 

3. Conclusions 

The immediate and most important application of these results is, of course, to the 
specification of nonlinear realizations of K(3) (Dondi 1971, pp 100-19 and Sarkar 1971, 
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pp 95-140) and the construction of the corresponding chiral Lagrangian (Sarkar 1971, 
pp 95-140) as described above. However, if we set 

112 

exp{ i(a +in)} (74) 

then 

U = exp(iA4,ivi) ( 7 5 )  

so that viewing the M‘ now as simply a set of eight real parameters we have produced a 
concrete expression for a finite SU(3) transformation on the fundamental (quark) 
representation as a by-product of our result. This would seem to lend itself rather 
naturally to use in problems of the type recently suggested by Dashen (1971), where 
finite (rather than infinitesimal) transformations are crucial. Recently, Rosen (1971) 
also has produced concrete expressions for such finite SU(3) transformations. Although 
his work is earlier than ours we were not aware of its existence when we performed our 
calculations, and it is therefore encouraging that his results indeed appear as a subset of 
ours when the limit (74) is applied. The only advantage in this particular application is 
that our general case directly includes the special and charge cases (as may be checked 
by setting c( = 0 or k i n ) ,  but this improvement may prove to be a ‘critical’ one. 
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